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ABSTRACT. As game development continues to be a lucrative industry, it has
become increasingly important to make performant experiences while keep-
ing production velocity high[1]. However, this is non-trivial when you have
to deal with many objects that have converging behaviour. The traditional
approach is to use object-oriented paradigms to construct massive and com-
plicated inheritance paths to share a set of behaviour. However, with the
additional indirections from code paths, the reusability of code decreases and
performance suffers[2].

To combat these issues, the traditional object-oriented design can be re-
placed with a more data-oriented design approach utilising a composition-
over-inheritance model where the data and logic are separated, called Entity-
Component-System (ECS). In this approach, where components and systems
can be added to a complex program without interfering with existing logic.
This flexibility sets it apart from the aforementioned traditional object-oriented
approaches based on heterogeneous collections of explicitly defined object
types, where implementing new combinations of behaviours can require far-
reaching changes.

The purpose of this thesis is to research the impacts of the memory ar-
rangement and how that affects implementation. Then pivot to explore var-
ious elements of ECS, highlighting its advantages, and discussing potential
implementations on a conceptual level.

Through comparative analysis, a well-designed ECS completely separates
from a naive implementation by leveraging optimized memory layouts and
caching to achieve significant performance improvements. These findings pro-
vide valuable insights for game developers seeking to build an efficient ECS.
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1. INTRODUCTION

1.1. Background. In modern game development, optimizing for performance and
production velocity is crucial, However, traditional object-oriented programming
(OOP) approaches often encounter challenges when dealing with the complexity
of game systems, particularly in managing large amounts of data efficiently. One
significant issue is the lack of data locality, which refers to how closely related data
elements are stored in memory.

In 2011, Robert Nystrom published his book Game Programming Patterns. In
the chapter on optimization patterns, Nystrom expounds on the importance of
data locality. This concept, while not revolutionary, underscores the fundamental
role of data storage, referencing, and manipulation is the impetus for creating
any program. Without efficient data locality, programs may suffer from increased
cache misses and slower memory access times, leading to performance bottlenecks
and decreased frame rates. This problem becomes more pronounced as games
become more sophisticated and demand higher fidelity graphics, complex physics
simulations, and larger virtual worlds. It was this chapter that motivated the
research into the relationship between data locality and the implementation of
Entity Component System.

1.2. ECS Libraries.

1.2.1. Matter. Matter, an ECS library written in Lua, provided with a debugger
and scheduler that has been developed specifically for Roblox, makes it easy to use
and understand.

Matter was selected for this paper to provide a baseline threshold to benchmark
against.

1.2.2. Flecs. Flecs is an efficient ECS made for games and simulations with many
entities. It also has an elaborate query engine that is capable of finding entities by
relationships[3] and can embed multitudes of operations into its queries.

Flecs was chosen because of its exhaustive API coupled with an involved com-
munity and in-depth documentation.
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1.2.3. Hecs. Hecs, a lightweight ECS that aims to be unobtrusive by being a library
and not a framework.

Hecs also has an archetypal storage and is the main inspiration for Matter. This
was the reason for why it was chosen for this paper.

1.3. Purpose. The traditional OOP paradigm, with its emphasis on class hierar-
chies and inheritance, often results in poor data locality due to how objects and
their associated data are stored in memory. As a result, game developers are turning
to data-oriented design (DOD) principles to address these performance issues.

By adopting a data-oriented approach, such as the ECS architecture, developers
can restructure their code to prioritize data locality. ECS separates game entities
into discrete components, each containing only the data relevant to a specific aspect
of gameplay. Systems then operate on these components in a data-driven manner,
promoting cache efficiency and reducing memory access overhead.

However, despite the potential benefits of ECS and other data-oriented tech-
niques, many developers still face challenges in understanding and implementing
an ECS efficiently. This gap underscores the need for comprehensive research and
documentation to explore the implications of data locality in game development
and provide practical solutions for optimizing an ECS implementation.

1.4. Research Question. How can the ECS architecture be optimized to address
the limitations of traditional object-oriented techniques?

2. METHOD

2.1. Research Approach. This research project is an exploratory study with the
aim of gaining an understanding of the inner workings of ECS. This study will adopt
a mixed-methods approach, with both inductive and deductive reasoning. This
approach is chosen to provide a comprehensive understanding of the relationship
between entity-component-systems, data locality, and performance.

2.2. Research Process. The research process will start with a thorough study of
the literature related to the field of ECS. Relevant research concepts will be sum-
marized and presented in the Theory chapter to construct a theoretical framework.
This framework will be used for analysis in the empirical part of the study.

The empirical part of the project consists of a comprehensive case study. Multiple
ECS implementations will be tested and analysed, using the framework constructed
in the theoretical part.

An implementation of an ECS from scratch will further be conducted in order
to experiment with different storage layouts. Through this iterative process, in-
sights into the optimal design and implementation of ECS will be gained, with a
particular focus on addressing performance bottlenecks related to data access and
manipulation.

3. THEORY

This theory chapter is dedicated to forming the theoretical foundation of ECS
architecture. The reader will get a fundamental understanding of what ECS is,
what makes it useful, and what the key elements of the architecture are. Together,
these parts form a theoretical framework which will be used as the base of both the
empirical and implementation part of the study.
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3.1. Entity Component System Architecture. The Entity Component System
(ECS) architecture provides infrastructure for representing distinct objects with
loosely coupled data and behaviour. Data is stored in contiguous storage types to
promote cache optimality which benefits performance. An ECS world consists of
any number of entities (unique IDs) associated with components, which are pure
data. The world is then manipulated by systems that access a set of component

types.

3.2. Cache Locality. When a CPU loads data from Random Access Memory it is
stored in a cache tier (i.e. L1, L2, L3), where the lower tiers are allowed to operate
faster relatively to how closely embedded it is to the CPU.[3] When a program
requests some memory, the CPU grabs a whole slab, usually from around 64 to 128
bytes starting from the requested address, and puts it in the CPU cache, i.e. cache
line. If the next requested data is in the same slab, the CPU reads it straight from
the cache, which is faster than hitting RAM. Inversely, when there is a cache miss,
i.e. it is not in the same slab then the CPU cannot process the next instruction
because it needs said data and waits a couple of CPU cycles until it successfully
fetches it. (Nystrom, 2011).

3.3. Data Layouts.

3.3.1. Array Of Structs. Array of Structs organizes data in a way where each struct
is stored as elements within an array, arranged in rows (see code snippet). This
memory arrangement is frequently utilized in object-oriented programming, mir-
roring how classes inherently structure their data members.[3]

1 struct AoS {

2 foo: ;

3 bar: ;
4}

5

6 values: <AoS>

3.3.2. Struct of Arrays. Struct of Arrays organizes data in a way where each field of
an entity is stored in separate arrays or ”columns” (see code snippet). This memory
arrangement in memory in a way that will be more beneficial to CPU performance
as it can better predict the next memory access.[3]

1 struct SoA {

2 foo: < >;
3 bar: < >,
4 }

5
6 values: SoA

3.4. SIMD. Single Instruction Multiple Data (SIMD) is a type of parallel com-
puting that performs the same operation on multiple values simultaneously.

3.5. Vectorization. Vectorization is where code meets the requirements to use
SIMD instructions. Those requirements are that: - Data must be stored in con-
tiguous arrays - The code should contain no branches or function calls
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3.6. Archetype. Storing data in contiguous arrays to maximize vectorization and
SIMD is the ideal situation, however it is a very complex problem in implemen-
tation. Below the ABC problem[4] is demonstrated where 3 entities all have the
component A which can be stored in a single column:

0: [A]
1: [A]
2: [A]

Now suppose entity 0 and entity 2 have the component B, leaving a gap between
the lower and upper bound entities in the component *B* array (column). The
column is now non-contiguous which means it cannot be vectorized or use SIMD:

0: [A, B]
1: [A, 1]
2: [A, B]

The components in the rows are stored contiguously, but the traversal over the
entities cannot be vectorized for code that requires both *A* and *B*. To make
these components contiguous in memory again, the entities at indexes 1 and 2 are
swapped, resulting in the following organization:

0: [A, B]
2: [A, B]
1: [A, 1]

However there are no operations that can fix the entity indexes when there are
more than two columns and if there are every combination of components present
in component storage:

0: [, B, 1

[, B, C]

A, B, C]

(A, B, 1

A, , 1

[A, , C]

L, ,cl
This problem is called the “ABC problem” which requires a relaxation in order
to support vectorization. Which is what developers have found that archetypes
solves.[4] Archetypes are semantically identical to “tables”. Each archetype con-
tains only one type of entity, meaning each unique combination of components
defining an entity has its own archetype. Below the following illustration is demon-
strated where 2 entities only has component A, 2 entities with A and B and finally
2 entities with both A and C (see code snippet). It follows the same SoA prin-
ciples where each component type has a column in the archetype. Rows in the
archetype correspond to specific entities, with each entity intersecting components
in the archetype.

DO WN =

1: [A]

2: [A, B]
3: [A, B]
4: [A, C]

5: [A, C]
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This type of organization enables fast querying and iteration, however it also
presents different challenges. Modifying entities, such as adding or removing com-
ponents, or adding new entities, can be costly operations. Each change necessitates
searching for the appropriate archetype, potentially creating a new archetype, and
updating entity placements in archetypes which is really slow and requires traversal
over every entity to find the archetype that the entity is in.

To move entities faster between archetypes, a common optimization is to keep
references to the next archetype based on component types (see Figure 1). Each
edge in the graph corresponds to a component that can be added, akin to an
intersection operation on the archetype set.

AN(BNCQC)

Removal of a component from the archetype is akin to a subtraction operation from
the set.

AN(BNC)-C

‘. This archetype graph facilitates O(1) transitions between adjacent archetypes to
mitigate the cost of fragmentation.

[A]
/®/v [A, B]
C
[l [B] /®/* [A, B, C]
[c] '

3.7. Sparse Set. Sparse sets organize each component type into its own densely
packed array. A sparse set is composed of two arrays, one densely packed and one
sparsely populated. The sparse array contains the position of an entity ID that
is stored in the dense array (see Figure 2). Components are stored in parallel to
entities which allows for insertions and removals of components at O(1) constant
time as it is just setting a single value in an array. The trade-off is that it is less
memory efficient as it revolves around many repeated random access and it requires
‘2n‘ memory units to store these indices in two arrays. However, they serve different
purposes. The dense array is for operations over many entities such as iteration
while the sparse array is for single entity lookup.

i 1 | «---- sparse array

2 7 0 € dense array




IMPLEMENTATION OF ENTITY COMPONENT-SYSTEMS IN SCRIPTING 7

To add an entity to the sparse set, it is pushed back onto the dense array and
the sparse array is updated with the entity as the key, while the index repre-
senting its position in the dense array becomes its corresponding value. This en-
sures constant-time lookups to see whether an entity is contained in the sparse
set: dense[sparse[i]] == i. However, removing an entity is more complicated
as it involves swapping it with the last entity in the dense array and updating their
respective positions in the sparse array. For instance, if entity 6 (indexed at 3 in
the dense array) is to be removed, it is swapped with the last entity (e.g. entity 7),
and the corresponding entry in the sparse array is adjusted to reflect this change.
The removed entity is then simply removed from the end of the dense array. This
operation ensures that the dense array remains tightly packed, facilitating efficient
data management.

However, removing an entity is more complicated as it involves swapping it with
the last entity in the dense dense array and updating its corresponding position in
the sparse array. Using the previous Figure as an example, if the entity 6 (indexed
at 3 in the dense array) is to be removed then it will be swapped with the last entity
which is entity 7 and the corresponding entry in the sparse array will be updated.
The removed entity is then simply removed from the end of the dense array (see
Figure 3). This method ensures that the dense array remains tightly packed.[5]

2 0 1| 1€ sparse array

2 6 0 <o dense array

The sparse set structure is beneficial for programs that frequently manipulate
the component structures of entities. However, querying multiple components can
become less efficient due to the need to load and reference each component array
individually. In contrast to archetypes, which only needs to iterate over entities
matching their query.

4. IMPLEMENTATION

The decision to use Lua scripting language for the ECS implementation was
ultimately chosen because a pure Lua implementation confers distinct advantages
in terms of compatibility and portability. By eschewing reliance on external C or
C++ libraries or bindings, we ensure that our ECS framework remains platform-
agnostic and compatible across various game engines. While some game engines
offer support for integrating native code written in C or C++, not all engines
provide this capability. Therefore, by keeping our implementation solely within the
Lua environment, we maximize compatibility across different engines and platforms,
including those that may lack native code integration capabilities.

4.1. Data Structures. The ECS utilize several key data structures to organize
and manage entities and components within the ECS framework:
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e Archetype: Represents a group of entities sharing the same set of compo-
nent types. Each archetype maintains information about its components,
entities, and associated records.

e Record: Stores the archetype and row index of an entity to facilitate fast

lookups.

EntityIndex: Maps entity IDs to their corresponding records.

ComponentIndex: Maps IDs to archetype records.

Archetypelndex: Maps type hashes to archetype.

ArchetypeMap: Maps archetype IDs to archetype records which is used

to find the column for the corresponding component.

e Archetypes: Maintains a collection of archetypes indexed by their IDs.

These data structures form the foundation of our ECS implementation, enabling
efficient organization and retrieval of entity-component data.

4.2. Functions. The ECS needs to know which components an entity has and
provide an interface to manipulate it and search for homogenous entities from a set
of components quickly.

4.2.1. get(entityld, ...) Purpose: The get function retrieves component data as-
sociated with a given entity. It accepts the entity ID and one or more component
IDs as arguments and returns the corresponding component data.

local function get(entityId: i53, a, b, c, d, e)
local id = entityId
local record = entityIndex[id]
if not record then
return nil
end

return getComponent (record, a), getComponent(record, D)
end

local function getComponent(record: Record, componentId: i24)
local id = record.archetype.id
local archetypeRecord = componentIndex[componentId][id]

if not archetypeRecord then
return nil
end

local column = archetypeRecord.column

return archetype.data.columns[column][record.row]
end

Explanation: This function retrieves the record for the given entity from entityIndex.
It then calls getComponent (record, componentId) to fetch the data for each spec-
ified component (a, b, c, d, e) from the entity’s archetype which is returned.

4.2.2. entity(). Purpose: This function is responsible for generating a unique en-
tity ID.
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local nextId = 0

local function entity()
nextId += 1
return nextId

end

Explanation: Generates a unique entity ID by incrementing a counter each time
it is called.

4.2.3. add(entityld, componentld, data). Purpose: Adds a component with asso-
ciated data to a given entity

local function add(entity, id, data)
local record ensureRecord (entityId)

local source = record.archetype
local destination = archetypeTraverseAdd(id, source)
if not source == destination then

moveEntity (entityId, record, destination)
-- update query cache
else
if #destination.types > O then
newEntity(entityId, record, destination)

end
end
local archetypeRecord = destination.records[componentId]
local columns = destination.data.columns
columns [archetypeRecord.column] [record.row] = data

end

Explanation: This function first ensures that the record exists for the given entity
using ensureRecord(). It then determines the destination archetype from the
current entity archetype and new component using archetypeTraverseAdd(). It
will move the entity to a new archetype or if the entity does not have a record yet,
initializes the record by calling newEntity(). Lastly it updates the data for the
component in the corresponding column of the archetype’s data.

4.2.4. query(...) Purpose: Performs a query against the entities that exists based
on the specified components.

local function query(a, b, c, ..)
local entities = {}
for archetype in archetypesWith(a) do
if not archetypesWith(b)[archetype] then
continue
end
if not archetypesWith(c)[archetype] then
continue
end
-- match archetype if every archetype
-- from the specified components are compatible
end
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local i = 0
return function ()

i+=1
if i > #entities then
return
end
local entity = entities[i]
local record = entityIndex[entity]
local archetype, row = record.archetype, record.row
local columns = archetype.data.columns

local id = archetype.id

return entity,
columns [componentIndex [a][id] .column] [row],
columns [componentIndex [b] [id] .column] [row],
columns [componentIndex [c][id] .column] [row]

end
end

Explanation: This function through retrieves all archetypes that have the first
component in the specified component set through archetypesWith() that goes
through the ArchetypeMap which maps a component to a set of all of the archetypes
with that component. The query stacks operations that evaluate the conditions
one by one with the subsequent components in the set. When an archetype gets
matched, it iterates through the entities in that archetype and fetches the data for
the component for each entity.

5. ANALYSIS

There are three main operational aspects to measure for performance to eval-
uate the efficiency of the ECS, namely updating component data, random access
and queries. Each of these aspects provide metrics to examine the performance
characteristics and identify key areas for optimization.

5.1. Random Access. Retrieving component data associated with a specific en-
tity is often slow because it requires multiple random access into memory due to
map lookup. This is exemplified by Matter requiring multiple indirections to look
through an entity in all of the storages with two subsequent map lookups using the
entity archetype.

However, with specific locations of component data memoized by the column
and row respectively as specified by Flecs, constant O(1) time data retrieval can
be achieved by mostly array lookups as evident by Jade, an alias for the ECS
implementation made during this paper that outperformed Matter by 98.25% (see
below).

5.2. Updating Component Data. Insertions and Removals of component data
being slow was expected due to that moving many overlapping components between
archetypes costs a lot of computation when reconciling the columns and rows. Mat-
ter is especially slow here because it needs to naively look through every storage
to find its old archetype and it has to create a new the new archetype every time
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an entity is updated. Instead, Jade has amortized this cost by caching edges to
adjacent archetypes on the graph (see Figure 1).
The result is that updating data was 360% faster than Matter (see below).

5.3. Queries. Matter is incapable leveraging very performant queries due to it is
failing cache locality under adverse conditions as entities data is stored in AoS
that requires heaps of random accesses, including many unnecessary hash lookups.
It is also naively populating the query cache by iterating over every archetype in
the world in linear time which scales poorly as there are always going to be more
archetypes than components.

Jade saw a 93.9% increase in iteration speed by having memoized the entity loca-
tions by their column and row indices for fast indexing during contiguous traversal
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over homogeneous entities. Query creations are also cheaper as populating the
cache is cheaper when only iterating over archetypes with a common component.

6. CONCLUSIONS

Through the exploration of ECS and its performance characteristics, this re-
search sheds light on crucial insights on various optimization strategies of highly
abstracted memory layouts. The theoretical framework established highlights the
significance of prioritizing data locality and separating data and logic in game
systems. Additionally, the empirical analysis of various ECS implementations un-
derscores the importance of memory arrangement and efficient data manipulation
strategies.

Implementations such as Flecs exhibit superior performance by structuring mem-
ory layouts to minimize indirections, resulting in constant-time data retrieval for
random access. Conversely, approaches like Matter, relying heavily on map lookups,
experience performance penalties in random access operations. Implementations
with poor cache locality, exemplified by Matter, struggle with slow query perfor-
mance due to excessive random accesses during adverse locality conditions and
emphasized the importance of caching strategies.

In conclusion, the ECS architecture offers a promising solution for addressing
performance challenges in game development, however it needs to be implemented
carefully in order to not have performance penalties.
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