jecs/modules/Spring/vector3.luau

134 lines
2.9 KiB
Text
Raw Normal View History

2026-01-26 03:28:14 +00:00
--!native
--!optimize 2
--!strict
export type Spring = {
type: "Vector3",
d: number,
f: number,
g: Vector3,
p: Vector3,
v: vector
}
local EPS = 1e-5 -- epsilon for stability checks around pathological frequency/damping values
local function create(d: number, f: number, origo: Vector3, goal: Vector3): Spring
return {
type = "Vector3",
d = d,
f = f,
g = goal,
p = origo,
v = vector.create(0, 0, 0),
}
end
local function step(spring: Spring, dt: number): Vector3
local f = spring.f
local d = spring.d
local g = (spring.g :: any)::vector
local v = spring.v
local p = (spring.p :: any)::vector
if d == 1 then -- critically damped
local q = math.exp(-f*dt)
local w = dt*q
local c0 = q + w*f
local c2 = q - w*f
local c3 = w*f*f
local o = p - g
p = o * c0 + v * w + g
v = v * c2 - o * c3
elseif d < 1 then -- underdamped
local q = math.exp(-d*f*dt)
local c = math.sqrt(1 - d*d)
local i = math.cos(dt*f*c)
local j = math.sin(dt*f*c)
-- Damping ratios approaching 1 can cause division by very small numbers.
-- To mitigate that, group terms around z=j/c and find an approximation for z.
-- Start with the definition of z:
-- z = sin(dt*f*c)/c
-- Substitute a=dt*f:
-- z = sin(a*c)/c
-- Take the Maclaurin expansion of z with respect to c:
-- z = a - (a^3*c^2)/6 + (a^5*c^4)/120 + O(c^6)
-- z ≈ a - (a^3*c^2)/6 + (a^5*c^4)/120
-- Rewrite in Horner form:
-- z ≈ a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
local z
if c > EPS then
z = j/c
else
local a = dt*f
z = a + ((a*a)*(c*c)*(c*c)/20 - c*c)*(a*a*a)/6
end
-- Frequencies approaching 0 present a similar problem.
-- We want an approximation for y as f approaches 0, where:
-- y = sin(dt*f*c)/(f*c)
-- Substitute b=dt*c:
-- y = sin(b*c)/b
-- Now reapply the process from z.
local y
if f*c > EPS then
y = j/(f*c)
else
local b = f*c
y = dt + ((dt*dt)*(b*b)*(b*b)/20 - b*b)*(dt*dt*dt)/6
end
local o = p - g
p = (o * (i + z*d) + v * y) * q + g
v = (v * (i - z*d) - o * (z*f)) * q
else -- overdamped
local c = math.sqrt(d*d - 1)
local r1 = -f*(d + c)
local r2 = -f*(d - c)
local ec1 = math.exp(r1*dt)
local ec2 = math.exp(r2*dt)
local o = p - g
local co2 = (v - o*r1)/(2*f*c)
local co1 = ec1*(o - co2)
p = co1 + co2*ec2 + g
v = co1*r1 + co2*ec2*r2
end
spring.p = (p :: any) :: Vector3
spring.v = (v :: any) :: Vector3
return (p :: any) :: Vector3
end
local SLEEP_OFFSET_SQ_LIMIT = (1/3840)^2 -- square of the offset sleep limit
local SLEEP_VELOCITY_SQ_LIMIT = 1e-2^2 -- square of the velocity sleep limit
local function can_sleep(spring: Spring): boolean
if vector.magnitude(spring.v)^2 > SLEEP_VELOCITY_SQ_LIMIT then
return false
end
if (spring.p - spring.g).Magnitude^2 > SLEEP_OFFSET_SQ_LIMIT then
return false
end
return true
end
return {
create = create,
step = step,
can_sleep = can_sleep,
}